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ABSTRACT 
 

Cloud computing is a new computational paradigm that offers an innovative business model for organization to 

adopt IT without upfront investments. Despite the potential gain achieved from the cloud computing. The security is 

an important aspect of quality of services. To ensures the correctness of user data in cloud. In the cloud many 

services are provided to the client by cloud. Data store is main future that cloud service provides to the companies to 

store huge amount of storage capacity. But still many companies are not ready to implement cloud computing 

technology due to lack of proper security control policy and weakness in protection which lead to many challenge in 

cloud computing. The main objectives of this paper are, 1) To prevent Data access from unauthorized access, it 

propose a distributed scheme to provide security of the data in cloud .This could be achieved by using 

homomorphism token with distributed verification of erasure-coded data. 2) Proposed scheme perfectly stores the 

data and identifies the any tamper at the cloud server. 3) And also performs some of the tasks like data updating, 

deleting, appending. 
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I. INTRODUCTION 

 

Cloud computing, to put it simply, means internet 

computing. The internet is commonly visualized as 

clouds; hence the term “cloud computing” for 

computation done through the internet. With cloud 

computing users can access database resources via the 

internet from anywhere, for as long as they need, 

without worrying about any maintenance or 

management of actual resources. Besides, databases in 

cloud are very dynamic and scalable. Cloud Computing 

is unlike grid computing, utility computing, or 

autonomic computing. In fact, it is a very independent 

platform in terms of computing. The best example of 

cloud computing is Google apps where any application 

can be accessed using a browser and it can be deployed 

on thousands of computer through the internet. It also 

provides facilities for users to develop, deploy and 

manage their applications on the cloud, which entails 

virtualization of resources that maintains and manages 

itself. 

 

Our proposed scheme enables the data owner to delegate 

tasks of data file re-encryption and user secret key 

update to cloud servers without disclosing data contents 

or user access privilege information. We achieve this 

goal by exploiting and uniquely combining techniques 

and algorithms (Correctness Verification and Error 

Localization, traditional replication-based file 

distribution, adding random perturbations). In this paper, 

we propose an effective and flexible distributed scheme 

with explicit dynamic data support to ensure the 

correctness of users’ data in the cloud. We rely on 

erasure-correcting code in the file distribution 

preparation to provide redundancies and guarantee the 

data dependability. This construction drastically reduces 

the communication and storage overhead as compared to 

the traditional replication-based file distribution 

techniques. 

 

By utilizing the homomorphism token with distributed 

verification of erasure-coded data, our scheme achieves 

the storage correctness insurance as well as data error 

localization: 

 

Whenever data corruption has been detected during the 
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storage correctness verification, our scheme can almost 

guarantee the simultaneous localization of data errors 

i.e. the identification of the misbehaving server(s). 

 

Our work is among the first few ones in this field to 

consider distributed data storage in Cloud Computing. 

Our contribution can be summarized as the following 

three aspects: 1) Compared to many of its predecessors, 

which only provide binary results about the storage state 

across the distributed servers, the challenge-response 

protocol in our work further provides the localization of 

data error. 2) Unlike most prior works for ensuring 

remote data integrity, the new scheme supports secure 

and efficient dynamic operations on data blocks, 

including: update, delete and append. 3) Extensive 

security and performance analysis shows that the 

proposed scheme is highly efficient and resilient against 

Byzantine failure, malicious data modification attack, 

and even server colluding attacks. 

 

II. METHODS AND MATERIAL 

 

Achieved Problem statement 

 

A. System Model 

 

A representative network architecture for cloud data 

storage is illustrated in Figure 1. Three different network 

entities can be identified as follows: 

 

 User: users, who have data to be stored in the cloud 

and rely on the cloud for data computation, consist 

of both individual consumers and organizations.  

 

 Cloud Service Provider (CSP): a CSP, who has 

significant resources and expertise in building and 

managing distributed cloud storage servers, owns 

and operates live Cloud Computing systems.  

 

 Third Party Auditor (TPA): an optional TPA, who 

has expertise and capabilities that users may not 

have, is trusted to assess and expose risk of cloud 

storage services on behalf of the users upon request. 

In cloud data storage, a user stores his data through a 

CSP into a set of cloud servers, which are running in 

a simultaneous, cooperated and distributed manner. 

 

Data redundancy can be employed with technique of 

erasure-correcting code to further tolerate faults or 

server crash as user’s data grows in size and importance. 

Thereafter, for application purposes, the user interacts 

with the cloud servers via CSP to access or retrieve his 

data. In some cases, the user may need to perform block 

level operations on his data. 

 
Figure 1 : Cloud data storage architecture 

 

The most general forms of these operations we are 

considering are block update, delete, insert and append. 

As users no longer possess their data locally, it is of 

critical importance to assure users that their data are 

being correctly stored and maintained. That is, users 

should be equipped with security means so that they can 

make continuous correctness assurance of their stored 

data even without the existence of local copies. In case 

that user do not necessarily have the time, feasibility or 

resources to monitor their data, they can delegate the 

tasks to an optional trusted TPA of their respective 

choices. In our model, we assume that the point-to-point 

communication channels between each cloud server and 

the user is authenticated and reliable, which can be 

achieved in practice with little overhead. Note that we 

don’t address the issue of data privacy in this paper, as 

in Cloud Computing, data privacy is orthogonal to the 

problem we study here. 

 

B. Adversary Model 

 

Security threats faced by cloud data storage can come 

from two different sources. On the one hand, a CSP can 

be self-interested, un trusted and possibly malicious. Not 

only does it desire to move data that has not been or is 

rarely accessed to a lower tier of storage than agreed for 

monetary reasons, but it may also attempt to hide a data 

loss incident due to management errors, Byzantine 

failures and so on. On the other hand, there may also 
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exist an economically motivated adversary, who has the 

capability to compromise a number of cloud data storage 

servers in different time intervals and subsequently is 

able to modify or delete users’ data while remaining 

undetected by CSPs for a certain period. Specifically, we 

consider two types of adversary with different levels of 

capability in this paper: Weak Adversary: The adversary 

is interested in corrupting the user’s data files stored on 

individual servers. Once a server is comprised, an 

adversary can pollute the original data files by 

modifying or introducing its own fraudulent data to 

prevent the original data from being retrieved by the 

user. Strong Adversary: This is the worst case scenario, 

in which we assume that the adversary can compromise 

all the storage servers so that he can intentionally modify 

the data files as long as they are internally consistent. In 

fact, this is equivalent to the case where all servers are 

colluding together to hide a data loss or corruption 

incident. 

 

C. Design Goals 

 

To ensure the security and dependability for cloud data 

storage under the aforementioned adversary model, we 

aim to design efficient mechanisms for dynamic data 

verification and operation and achieve the following 

goals:  

 

1) Storage correctness: to ensure users that their data 

are indeed stored appropriately and kept intact all 

the time in the cloud.  

2) Fast localization of data error: to effectively locate 

the malfunctioning server when data corruption has 

been detected. 

3) Dynamic data support: to maintain the same level of 

storage correctness assurance even if users modify, 

delete or append their data files in the cloud. (4) 

Dependability: to enhance data availability against 

Byzantine failures, malicious data modification and 

server colluding attacks, i.e. minimizing the effect 

brought by data errors or server failures. (5) 

Lightweight: to enable users to perform storage 

correctness checks with minimum overhead. 

 

D. Notation and Preliminaries 

 

 F – the data file to be stored. We assume that F can 

be denoted as a matrix of m equal-sized data 

vectors, each consisting of l blocks. Data blocks are 

all well represented as elements in Galois Field 

GF(2p) for p = 8 or 16.  

 A – The dispersal matrix used for Reed-Solomon 

coding.  

 G – The encoded file matrix, which includes a set of 

n = m + k vectors, each consisting of l blocks.  

 fkey (·) – pseudorandom function (PRF), which is 

defined as f : {0,1}  

 ∗× key → GF(2p). 

 key(·) – pseudorandom permutation (PRP), which is 

defined as φ : {0,1}log2(l) × key →  

 {0,1}log2(l).  

 ver. – a version number bound with the index for 

individual blocks, which records the times the block 

has been modified. Initially we assume ver is 0 for 

all data blocks.  

 sver ij – the seed for PRF, which depends on the file 

name, block index i, the server position j as well as 

the optional block version number ver.  

 

Secure Data Storage in Cloud 

 

In cloud storage system, companies stores their data in 

the remotely located data server. Accordingly, 

correctness of the data is assured. Even though 

sometimes unauthorized person may modify or delete 

the data which leads to server compromise and/or 

random Byzantine failures. Because it can be the first 

step for fast recovery of the storage errors. The cloud 

storage systems propose an effective and flexible 

distributed scheme with explicit dynamic data support 

for file distribution across cloud servers. 

 

By computing homomorphic token using universal hash 

function which can be perfectly integrated with the 

verification of erasure-coded data. As well as it 

identifies misbehaving servers. 

 

Finally, the procedure for file retrieval and error 

recovery based on erasure- correcting code is outlined. 

 

Token Correctness 

 

It achieves assurance for data storage correctness and 

data error localization, using pre-computed token. 

Before sharing file distribution using pre-computes a 

certain number of shortest verification token are 

generated that will ensure security for a block of data in 
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a file in cloud storage. When the user wants to make 

sure the storage correctness for the data in the cloud, he 

challenges the cloud servers with a set of randomly 

generated block indices. After getting assurance of the 

user it again asks for authentication by which the user is 

confirmed to be the authenticated user. Upon receiving 

assurance, each cloud server computes a short “signature” 

over the specified blocks and returns them to the user. 

The values of these signatures should match the 

corresponding tokens pre-computed by the user. All 

servers operate over the same subset of the indices, the 

requested response values for integrit y check must also 

be a valid codeword determined by a secret matrix. 

Suppose the user wants to challenge the cloud server’s t 

times to make sure the correctness of data storage. Then, 

he must pre-compute t verification tokens for each 

function, a challenge key and a master key are used. To 

generate the token for server j, the user acts as follows 

the details of token Generations are shown in Algorithm 

1. 

 Derive an arbitrary value i and a permutation key 

based on master permutation key. 

 Calculate the set of randomly-chosen index.  

 Calculate the token using encoded file and the 

arbitrary value derived.  

 

Algorithm 1 Token Pre-computation  

 

Block of data is represented as l; 

 

No. of .blocks is denoted as n; 

 

Let f be the function and t be the token; Index 

per proof is denoted as r; 

Generate M k   and  C k ; 

For point G (j); j->1, n execute 

/*j server position*/ 

For round i->1, t execute 

/*i block index*/ 

Derive i = f (i) and k (i) from master 

key. Compute v(j) 

End for 

End for 

Store all the views locally. End procedures 

 

Correctness Verification and Error 

 

Error localization is a key requirement for eradicate 

errors in storage systems. However, many previous 

schemes do not explicitly consider the problem of data 

error localization. 

 

The challenges response protocol in our work future 

provides the localization of data error. Which only 

provides binary results about the storage state across the 

distributed service in predecessors? The response values 

from servers for each challenge not only determine the 

correctness of the distributed storage, but also contain 

information to locate potential data error(s). 

 

Specifically, the procedure of the with challenge- 

response for a cross-check over the n servers is 

described as follows 

• The client reveals the i as well as the with key k (i) 

to each servers  

• The server storing vector G aggregates those r 

rows  

• Specified by index k(i) into a linear combination R 

• Upon receiving R is from all the servers, the user 

takes away values in R. 

• Then the  user verifies whether the

 received values remain a valid codeword 

determined by secret matrix. 

 

Because all the servers operate over the same subset of 

indices, the linear aggregation of these r specified rows 

(R (1) i , . . . ,R(n)i ) has to be a codeword in the 

encoded file matrix. If the above equation holds, the 

challenge is passed. Otherwise, it indicates that among 

those specified rows, there exist file block corruptions. 

Once the inconsistency among the storage has been 

successfully detected, we can rely on the pre-computed 

verification tokens to further determine where the 

potential data error(s) lies in. 

 

III. RELATED WORKS 
 

“Proof of irretrievability” (POR) model for ensuring the 

remote data integrity. Their scheme combines spot-

checking and error correcting code to ensure both 

possession and irretrievability of files on archive service 

systems. Shacham [3] built on this model and 

constructed a random linear function based 

homomorphism authenticator which enables unlimited 
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number of challenges and requires less communication 

overhead due to its usage of relatively small size of BLS 

signature. In their subsequent work, Ateniese [4] 

described a PDP scheme that uses only symmetric key 

based cryptography. This method has lower-overhead 

than their previous scheme and allows for block updates, 

deletions and appends to the stored file, which has also 

been supported in our work. However, their scheme 

focuses on single server scenario and does not provide 

data availability guarantee against server failures, 

leaving both the distributed scenario and data error 

recovery issue unexplored. 

 

The explicit support of data dynamics has further been 

studied in the two recent works [5] and [6]. 

 

The incremental cryptography work done by Bellare [10] 

also provides a set of cryptographic building blocks such 

as hash, MAC, and signature functions that may be 

employed for storage integrity verification while 

supporting dynamic operations on data. However, this 

branch of work falls into the traditional data integrity 

protection mechanism, where local copy of data has to 

be maintained for the verification. 

 

It is not yet clear how the work can be adapted to cloud 

storage scenario where users no longer have the data at 

local sites but still need to ensure the storage correctness 

efficiently in the cloud. In other related work, Curtmola 

[9] aimed to ensure data possession of multiple replicas 

across the distributed storage system. They extended the 

PDP scheme to cover multiple replicas without encoding 

each replica separately, providing guarantees that 

multiple copies of data are actually maintained. Very 

recently, C. Wang [8] gave a study on many existing 

solutions on remote data integrity checking, and 

discussed their pros and cons under different design 

scenarios of secure cloud storage services. Portions of 

the work presented in this paper have previously 

appeared as an extended abstract in [7]. 

 

We have revised the article a lot and add more technical 

details as compared to [7].The primary improvements 

are as follows: Firstly, we provide the protocol extension 

for privacy-preserving third-party auditing, and discuss 

the application scenarios for cloud storage service. 

Secondly, we add correctness analysis of proposed 

storage verification design. Thirdly, we completely redo 

all the experiments in our performance evaluation part, 

which achieves significantly improved result as 

compared to [7].We also add detailed discussion on the 

strength of our bounded usage for protocol verifications 

and its comparison with state-of-the-art. 

 

IV. CONCLUSION 

 
In this paper, we investigate the problem of data security 

in cloud data storage, which is essentially a distributed 

storage system. To achieve the assurances of cloud data 

integrity and availability and enforce the quality of 

dependable cloud storage service for users, we propose 

an effective and flexible distributed scheme with explicit 

dynamic data support, including block update, delete, 

and append. We rely on erasure-correcting code in the 

file distribution preparation to provide redundancy parity 

vectors and guarantee the data dependability. 

 

By utilizing the homomorphism token with distributed 

verification of erasure-coded data, our scheme achieves 

the integration of storage correctness insurance and data 

error localization, i.e., whenever data corruption has 

been detected during the storage correctness verification 

across the distributed servers, we can almost guarantee 

the simultaneous identification of the misbehaving 

server(s).Considering the time, computation resources, 

and even the related online burden of users, we also 

provide the extension of the proposed main scheme to 

support third party auditing, where users can safely 

delegate the integrity checking tasks to third-party 

auditors and be worry-free to use the cloud storage 

services. Through detailed security and extensive 

experiment results, we show that our scheme is highly 

efficient and resilient to Byzantine failure, malicious 

data modification attack, and even server colluding 

attacks. 
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