
IJSRSET162263 | Received: 17 March 2016 | Accepted: 23 March 2016 | March-April 2016 [(2)2: 222-227]

© 2016 IJSRSET | Volume 2 | Issue 2 | Print ISSN : 2395-1990 | Online ISSN : 2394-4099
Themed Section: Engineering and Technology

222

Ensuring Data Storage Security in Cloud Computing Using

Homomorphism Token

Loheswaran K, Deepan R

Department of Coputer Science and Technology, Sasurie College of Engineering, Vijayamangalam, Tamil Nadu

ABSTRACT

Cloud computing is a new computational paradigm that offers an innovative business model for organization to

adopt IT without upfront investments. Despite the potential gain achieved from the cloud computing. The security is

an important aspect of quality of services. To ensures the correctness of user data in cloud. In the cloud many

services are provided to the client by cloud. Data store is main future that cloud service provides to the companies to

store huge amount of storage capacity. But still many companies are not ready to implement cloud computing

technology due to lack of proper security control policy and weakness in protection which lead to many challenge in

cloud computing. The main objectives of this paper are, 1) To prevent Data access from unauthorized access, it

propose a distributed scheme to provide security of the data in cloud .This could be achieved by using

homomorphism token with distributed verification of erasure-coded data. 2) Proposed scheme perfectly stores the

data and identifies the any tamper at the cloud server. 3) And also performs some of the tasks like data updating,

deleting, appending.

Keywords: Cloud Computing, Internet Computing, Homomorphism, Data Storage Security, TPA,CSP

I. INTRODUCTION

Cloud computing, to put it simply, means internet

computing. The internet is commonly visualized as

clouds; hence the term “cloud computing” for

computation done through the internet. With cloud

computing users can access database resources via the

internet from anywhere, for as long as they need,

without worrying about any maintenance or

management of actual resources. Besides, databases in

cloud are very dynamic and scalable. Cloud Computing

is unlike grid computing, utility computing, or

autonomic computing. In fact, it is a very independent

platform in terms of computing. The best example of

cloud computing is Google apps where any application

can be accessed using a browser and it can be deployed

on thousands of computer through the internet. It also

provides facilities for users to develop, deploy and

manage their applications on the cloud, which entails

virtualization of resources that maintains and manages

itself.

Our proposed scheme enables the data owner to delegate

tasks of data file re-encryption and user secret key

update to cloud servers without disclosing data contents

or user access privilege information. We achieve this

goal by exploiting and uniquely combining techniques

and algorithms (Correctness Verification and Error

Localization, traditional replication-based file

distribution, adding random perturbations). In this paper,

we propose an effective and flexible distributed scheme

with explicit dynamic data support to ensure the

correctness of users’ data in the cloud. We rely on

erasure-correcting code in the file distribution

preparation to provide redundancies and guarantee the

data dependability. This construction drastically reduces

the communication and storage overhead as compared to

the traditional replication-based file distribution

techniques.

By utilizing the homomorphism token with distributed

verification of erasure-coded data, our scheme achieves

the storage correctness insurance as well as data error

localization:

Whenever data corruption has been detected during the

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

223

storage correctness verification, our scheme can almost

guarantee the simultaneous localization of data errors

i.e. the identification of the misbehaving server(s).

Our work is among the first few ones in this field to

consider distributed data storage in Cloud Computing.

Our contribution can be summarized as the following

three aspects: 1) Compared to many of its predecessors,

which only provide binary results about the storage state

across the distributed servers, the challenge-response

protocol in our work further provides the localization of

data error. 2) Unlike most prior works for ensuring

remote data integrity, the new scheme supports secure

and efficient dynamic operations on data blocks,

including: update, delete and append. 3) Extensive

security and performance analysis shows that the

proposed scheme is highly efficient and resilient against

Byzantine failure, malicious data modification attack,

and even server colluding attacks.

II. METHODS AND MATERIAL

Achieved Problem statement

A. System Model

A representative network architecture for cloud data

storage is illustrated in Figure 1. Three different network

entities can be identified as follows:

 User: users, who have data to be stored in the cloud

and rely on the cloud for data computation, consist

of both individual consumers and organizations.

 Cloud Service Provider (CSP): a CSP, who has

significant resources and expertise in building and

managing distributed cloud storage servers, owns

and operates live Cloud Computing systems.

 Third Party Auditor (TPA): an optional TPA, who

has expertise and capabilities that users may not

have, is trusted to assess and expose risk of cloud

storage services on behalf of the users upon request.

In cloud data storage, a user stores his data through a

CSP into a set of cloud servers, which are running in

a simultaneous, cooperated and distributed manner.

Data redundancy can be employed with technique of

erasure-correcting code to further tolerate faults or

server crash as user’s data grows in size and importance.

Thereafter, for application purposes, the user interacts

with the cloud servers via CSP to access or retrieve his

data. In some cases, the user may need to perform block

level operations on his data.

Figure 1 : Cloud data storage architecture

The most general forms of these operations we are

considering are block update, delete, insert and append.

As users no longer possess their data locally, it is of

critical importance to assure users that their data are

being correctly stored and maintained. That is, users

should be equipped with security means so that they can

make continuous correctness assurance of their stored

data even without the existence of local copies. In case

that user do not necessarily have the time, feasibility or

resources to monitor their data, they can delegate the

tasks to an optional trusted TPA of their respective

choices. In our model, we assume that the point-to-point

communication channels between each cloud server and

the user is authenticated and reliable, which can be

achieved in practice with little overhead. Note that we

don’t address the issue of data privacy in this paper, as

in Cloud Computing, data privacy is orthogonal to the

problem we study here.

B. Adversary Model

Security threats faced by cloud data storage can come

from two different sources. On the one hand, a CSP can

be self-interested, un trusted and possibly malicious. Not

only does it desire to move data that has not been or is

rarely accessed to a lower tier of storage than agreed for

monetary reasons, but it may also attempt to hide a data

loss incident due to management errors, Byzantine

failures and so on. On the other hand, there may also

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

224

exist an economically motivated adversary, who has the

capability to compromise a number of cloud data storage

servers in different time intervals and subsequently is

able to modify or delete users’ data while remaining

undetected by CSPs for a certain period. Specifically, we

consider two types of adversary with different levels of

capability in this paper: Weak Adversary: The adversary

is interested in corrupting the user’s data files stored on

individual servers. Once a server is comprised, an

adversary can pollute the original data files by

modifying or introducing its own fraudulent data to

prevent the original data from being retrieved by the

user. Strong Adversary: This is the worst case scenario,

in which we assume that the adversary can compromise

all the storage servers so that he can intentionally modify

the data files as long as they are internally consistent. In

fact, this is equivalent to the case where all servers are

colluding together to hide a data loss or corruption

incident.

C. Design Goals

To ensure the security and dependability for cloud data

storage under the aforementioned adversary model, we

aim to design efficient mechanisms for dynamic data

verification and operation and achieve the following

goals:

1) Storage correctness: to ensure users that their data

are indeed stored appropriately and kept intact all

the time in the cloud.

2) Fast localization of data error: to effectively locate

the malfunctioning server when data corruption has

been detected.

3) Dynamic data support: to maintain the same level of

storage correctness assurance even if users modify,

delete or append their data files in the cloud. (4)

Dependability: to enhance data availability against

Byzantine failures, malicious data modification and

server colluding attacks, i.e. minimizing the effect

brought by data errors or server failures. (5)

Lightweight: to enable users to perform storage

correctness checks with minimum overhead.

D. Notation and Preliminaries

 F – the data file to be stored. We assume that F can

be denoted as a matrix of m equal-sized data

vectors, each consisting of l blocks. Data blocks are

all well represented as elements in Galois Field

GF(2p) for p = 8 or 16.

 A – The dispersal matrix used for Reed-Solomon

coding.

 G – The encoded file matrix, which includes a set of

n = m + k vectors, each consisting of l blocks.

 fkey (·) – pseudorandom function (PRF), which is

defined as f : {0,1}

 ∗× key → GF(2p).

 key(·) – pseudorandom permutation (PRP), which is

defined as φ : {0,1}log2(l) × key →

 {0,1}log2(l).

 ver. – a version number bound with the index for

individual blocks, which records the times the block

has been modified. Initially we assume ver is 0 for

all data blocks.

 sver ij – the seed for PRF, which depends on the file

name, block index i, the server position j as well as

the optional block version number ver.

Secure Data Storage in Cloud

In cloud storage system, companies stores their data in

the remotely located data server. Accordingly,

correctness of the data is assured. Even though

sometimes unauthorized person may modify or delete

the data which leads to server compromise and/or

random Byzantine failures. Because it can be the first

step for fast recovery of the storage errors. The cloud

storage systems propose an effective and flexible

distributed scheme with explicit dynamic data support

for file distribution across cloud servers.

By computing homomorphic token using universal hash

function which can be perfectly integrated with the

verification of erasure-coded data. As well as it

identifies misbehaving servers.

Finally, the procedure for file retrieval and error

recovery based on erasure- correcting code is outlined.

Token Correctness

It achieves assurance for data storage correctness and

data error localization, using pre-computed token.

Before sharing file distribution using pre-computes a

certain number of shortest verification token are

generated that will ensure security for a block of data in

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

225

a file in cloud storage. When the user wants to make

sure the storage correctness for the data in the cloud, he

challenges the cloud servers with a set of randomly

generated block indices. After getting assurance of the

user it again asks for authentication by which the user is

confirmed to be the authenticated user. Upon receiving

assurance, each cloud server computes a short “signature”

over the specified blocks and returns them to the user.

The values of these signatures should match the

corresponding tokens pre-computed by the user. All

servers operate over the same subset of the indices, the

requested response values for integrit y check must also

be a valid codeword determined by a secret matrix.

Suppose the user wants to challenge the cloud server’s t

times to make sure the correctness of data storage. Then,

he must pre-compute t verification tokens for each

function, a challenge key and a master key are used. To

generate the token for server j, the user acts as follows

the details of token Generations are shown in Algorithm

1.

 Derive an arbitrary value i and a permutation key

based on master permutation key.

 Calculate the set of randomly-chosen index.

 Calculate the token using encoded file and the

arbitrary value derived.

Algorithm 1 Token Pre-computation

Block of data is represented as l;

No. of .blocks is denoted as n;

Let f be the function and t be the token; Index

per proof is denoted as r;

Generate M k and C k ;

For point G (j); j->1, n execute

/*j server position*/

For round i->1, t execute

/*i block index*/

Derive i = f (i) and k (i) from master

key. Compute v(j)

End for

End for

Store all the views locally. End procedures

Correctness Verification and Error

Error localization is a key requirement for eradicate

errors in storage systems. However, many previous

schemes do not explicitly consider the problem of data

error localization.

The challenges response protocol in our work future

provides the localization of data error. Which only

provides binary results about the storage state across the

distributed service in predecessors? The response values

from servers for each challenge not only determine the

correctness of the distributed storage, but also contain

information to locate potential data error(s).

Specifically, the procedure of the with challenge-

response for a cross-check over the n servers is

described as follows

• The client reveals the i as well as the with key k (i)

to each servers

• The server storing vector G aggregates those r

rows

• Specified by index k(i) into a linear combination R

• Upon receiving R is from all the servers, the user

takes away values in R.

• Then the user verifies whether the

 received values remain a valid codeword

determined by secret matrix.

Because all the servers operate over the same subset of

indices, the linear aggregation of these r specified rows

(R (1) i , . . . ,R(n)i) has to be a codeword in the

encoded file matrix. If the above equation holds, the

challenge is passed. Otherwise, it indicates that among

those specified rows, there exist file block corruptions.

Once the inconsistency among the storage has been

successfully detected, we can rely on the pre-computed

verification tokens to further determine where the

potential data error(s) lies in.

III. RELATED WORKS

“Proof of irretrievability” (POR) model for ensuring the

remote data integrity. Their scheme combines spot-

checking and error correcting code to ensure both

possession and irretrievability of files on archive service

systems. Shacham [3] built on this model and

constructed a random linear function based

homomorphism authenticator which enables unlimited

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

226

number of challenges and requires less communication

overhead due to its usage of relatively small size of BLS

signature. In their subsequent work, Ateniese [4]

described a PDP scheme that uses only symmetric key

based cryptography. This method has lower-overhead

than their previous scheme and allows for block updates,

deletions and appends to the stored file, which has also

been supported in our work. However, their scheme

focuses on single server scenario and does not provide

data availability guarantee against server failures,

leaving both the distributed scenario and data error

recovery issue unexplored.

The explicit support of data dynamics has further been

studied in the two recent works [5] and [6].

The incremental cryptography work done by Bellare [10]

also provides a set of cryptographic building blocks such

as hash, MAC, and signature functions that may be

employed for storage integrity verification while

supporting dynamic operations on data. However, this

branch of work falls into the traditional data integrity

protection mechanism, where local copy of data has to

be maintained for the verification.

It is not yet clear how the work can be adapted to cloud

storage scenario where users no longer have the data at

local sites but still need to ensure the storage correctness

efficiently in the cloud. In other related work, Curtmola

[9] aimed to ensure data possession of multiple replicas

across the distributed storage system. They extended the

PDP scheme to cover multiple replicas without encoding

each replica separately, providing guarantees that

multiple copies of data are actually maintained. Very

recently, C. Wang [8] gave a study on many existing

solutions on remote data integrity checking, and

discussed their pros and cons under different design

scenarios of secure cloud storage services. Portions of

the work presented in this paper have previously

appeared as an extended abstract in [7].

We have revised the article a lot and add more technical

details as compared to [7].The primary improvements

are as follows: Firstly, we provide the protocol extension

for privacy-preserving third-party auditing, and discuss

the application scenarios for cloud storage service.

Secondly, we add correctness analysis of proposed

storage verification design. Thirdly, we completely redo

all the experiments in our performance evaluation part,

which achieves significantly improved result as

compared to [7].We also add detailed discussion on the

strength of our bounded usage for protocol verifications

and its comparison with state-of-the-art.

IV. CONCLUSION

In this paper, we investigate the problem of data security

in cloud data storage, which is essentially a distributed

storage system. To achieve the assurances of cloud data

integrity and availability and enforce the quality of

dependable cloud storage service for users, we propose

an effective and flexible distributed scheme with explicit

dynamic data support, including block update, delete,

and append. We rely on erasure-correcting code in the

file distribution preparation to provide redundancy parity

vectors and guarantee the data dependability.

By utilizing the homomorphism token with distributed

verification of erasure-coded data, our scheme achieves

the integration of storage correctness insurance and data

error localization, i.e., whenever data corruption has

been detected during the storage correctness verification

across the distributed servers, we can almost guarantee

the simultaneous identification of the misbehaving

server(s).Considering the time, computation resources,

and even the related online burden of users, we also

provide the extension of the proposed main scheme to

support third party auditing, where users can safely

delegate the integrity checking tasks to third-party

auditors and be worry-free to use the cloud storage

services. Through detailed security and extensive

experiment results, we show that our scheme is highly

efficient and resilient to Byzantine failure, malicious

data modification attack, and even server colluding

attacks.

V. REFERENCES

[1] S.Sajithabanu and Dr.E.George Prakash Raj,

"Data Storage Security in Cloud" IJCST Vol. 2,

Issue 4, Oct. - Dec. 2011

[2] A. Jules and J. Burton S. Kaliski, "Pors: Proofs of

retrievability for large files," in Proc. of CCS’07,

Alexandria, VA, October 2007, pp.584–597.

[3] H. Shacham and B. Waters, "Compact proofs of

retrievability," in Proc. of Asiacrypt’08, volume

5350 of LNCS, 2008, pp. 90–107.

[4] G. Ateniese, R. D. Pietro, L. V. Mancini, and G.

Tsudik, "Scalable and efficient provable data

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

227

possession," in Proc. of Secure Comm’08,2008,

pp. 1–10.

[5] Q. Wang, C. Wang, J. Li, K. Ren, and W. Lou,

"Enabling public verifiability and data dynamics

for storage security in cloud computing,"in Proc.

of ESORICS’09, volume 5789 of LNCS.

Springer-Verlag, Sep.2009, pp. 355–370.

[6] C. Erway, A. Kupcu, C. Papamanthou, and R.

Tamassia, "Dynamic provable data possession," in

Proc. of CCS’09, 2009, pp. 213–222.

[7] C. Wang, Q. Wang, K. Ren, and W. Lou,

"Ensuring data storage security in cloud

computing," in Proc. of IWQoS’09, July 2009, pp.

1–9.

[8] C. Wang, K. Ren, W. Lou, and J. Li, "Towards

publicly auditable secure cloud data storage

services," IEEE Network Magazine, vol. 24,no. 4,

pp. 19–24, 2010.

[9] R. Curtmola, O. Khan, R. Burns, and G. Ateniese,

"Mr-pdp:Multiple-replica provable data

possession," in Proc. of ICDCS’08. IEEE

Computer Society, 2008, pp. 411–420.

[10] M. Bellare, O. Goldreich, and S. Goldwasser,

"Incremental cryptography: The case of hashing

and signing," in Proc. Of CRYPTO’ 94, volume

839 of LNCS. Springer-Verlag, 1994, pp. 216–

233.

[11] Amazon.com, "Amazon Web Services (AWS),"

Online at http://aws.amazon.com, 2008.

